557 research outputs found

    Madness and chaos in the culture of a therapeutic community

    Get PDF
    Purpose: The purpose of this paper is to explore the perceptions of staff members working in a psychiatric therapeutic community in relation to ideas of “madness” and “chaos”. Design/methodology/approach: The paper is a qualitative study based on oral history group witness seminars. Findings: The findings indicate that many of the participants experienced working in a therapeutic community as both exciting and unsettling; some found themselves questioning their own mental health at the time. Despite a sense of “madness” and chaos in the life of the community, there was also a feeling that it provided a containing environment for some very disturbed patients. Originality/value: This study is unusual in drawing upon staff member’s perceptions of their own relationship to “madness” in response to being involved in the life of a therapeutic community

    Secure information capacity of photons entangled in many dimensions

    Get PDF

    Ghost imaging with engineered quantum states by Hong-Ou-Mandel interference

    Get PDF
    Traditional ghost imaging experiments exploit position correlations between correlated states of light. These correlations occur directly in spontaneous parametric down-conversion (SPDC), and in such a scenario, the two-photon state used for ghost imaging is symmetric. Here we perform ghost imaging using an anti-symmetric state, engineering the two-photon state symmetry by means of Hong-Ou-Mandel interference. We use both symmetric and anti-symmetric states and show that the ghost imaging setup configuration results in object-image rotations depending on the state selected. Further, the object and imaging arms employ spatial light modulators for the all-digital control of the projections, being able to dynamically change the measuring technique and the spatial properties of the states under study. Finally, we provide a detailed theory that explains the reported observations.Comment: Published version. 19 pages, 5 figure

    Quantum process tomography via completely positive and trace-preserving projection

    Get PDF
    We present an algorithm for projecting superoperators onto the set of completely positive, trace-preserving maps. When combined with gradient descent of a cost function, the procedure results in an algorithm for quantum process tomography: finding the quantum process that best fits a set of sufficient observations. We compare the performance of our algorithm to the diluted iterative algorithm as well as second-order solvers interfaced with the popular CVX package for MATLAB, and find it to be significantly faster and more accurate while guaranteeing a physical estimate.Comment: 13pp, 8 fig

    Non-line-of-sight tracking of people at long range

    Get PDF
    A remote-sensing system that can determine the position of hidden objects has applications in many critical real-life scenarios, such as search and rescue missions and safe autonomous driving. Previous work has shown the ability to range and image objects hidden from the direct line of sight, employing advanced optical imaging technologies aimed at small objects at short range. In this work we demonstrate a long-range tracking system based on single laser illumination and single-pixel single-photon detection. This enables us to track one or more people hidden from view at a stand-off distance of over 50~m. These results pave the way towards next generation LiDAR systems that will reconstruct not only the direct-view scene but also the main elements hidden behind walls or corners
    corecore